
Refactoring a library’s legacy catalog: a case study

Joachim Ganseman
Library, Koninklijk Conservatorium Brussel,
School of Arts, Erasmus University College

Brussels, Belgium
Email: joachim.ganseman@ehb.be

Abstract—It is generally deemed safe practice to not change a
working IT system, but at some point, driven by new advances in
computing, an upgrade cannot be avoided anymore. This paper
tells the story of a custom configured, pre-MARC catalog from
the early 1990s. Well-tailored to the needs of a music library,
it proved solid and had been in use without changes ever since,
amassing almost 60,000 manually entered records by the end
of 2014. With full MS-DOS support disappearing from recent
OSes, it urgently needed to be ported to a modern web-accessible
OPAC. This confronted us with several challenges: finding a
robust way to convert records without losing information, dealing
with corrupt or erroneous data entered in several languages,
deciding on the functionality of a new catalog and lending library
management system, etc. All while not losing sight of the road
ahead: eventually, we want to be able to link the catalog to
sizeable repositories of digitized scores and audio recordings that
have been collected internally over the years, such that it could
grow out to effectively fulfill a bridge function between scores
and performances. The database conversion process is presented
here, paying special attention to the specific requirements of a
music research library and correction of encountered errors. This
is a useful case study for anyone who ever needs to reintegrate
a legacy digital catalog into a modern library system.

I. INTRODUCTION

The library of the Royal Conservatories in Brussels has
amassed approximately 1 million volumes in the almost 200
years of its existence. A significant part of it is of venerable
age: at the moment of writing, the RISM database has 16415
entries under its siglum B-Bc. Up to this day, a traditional paper
index card catalog is still often used for day-to-day search and
retrieval, as it is the most complete index of the collection that
is available.

In 1993 the library sought to start its first digital catalog. A
license for the Allegro-C library database system [1], originally
developed by the University Library of TU Braunschweig,
was bought. The system was initially configured for the
Lemmens Institute of Leuven and adopted by the Brussels
Conservatories’ library. In the second half of 1994 the system
was rolled out. Some configuration changes were made around
1998, but no version upgrade was ever attempted. The need to
update to a modern Integrated Library System became really
pressing.

The exercise to import the old catalog into a modern
Integrated Library System is not simple. Over 20 years, over
50 collaborators have entered data in the catalog, without much
input validation, authority control or correction policies. While
there was always a strict set of input conventions, mostly based
on ISBD rules [11], different stylistic habits can be observed
in records entered by different contributors. Over the years,

some input conventions were changed, while older records
remained unchanged. As a result, almost half of the present
records contained errors, and a major cleanup operation was
needed.

In this paper we’ll look mostly at the kind of errors that
were discovered, and efficient ways to fix them. For conversion
of the internal data format towards MARC21 [9], dedicated
software was written in which some of these correction rules
were hard-coded [2]. Until it has been decided which library
system will be adopted in the future, we use the Koha
Integrated Library System [3] as migration target to test the
conversion routine.

II. BACKGROUND

At the time the decision to start a digital catalog was made,
some alternatives were on the table. The main potential alter-
native was VUBIS. Originally developed at Vrije Universiteit
Brussel and later commercialized jointly with TU Eindhoven,
the company is currently called Infor and their product line
V-smart [4].

In 1993, VUBIS was deemed too expensive and not flexible
enough for the needs of a conservatory library. A license
for Allegro-C was two orders of magnitude cheaper, and
Allegro-C offered some features that were ahead of their time:
notably powerful full-text indexing, and exceptional content-
independence. It could be configured to store any kind of
ASCII data in any number of fields.

The choice was therefore quickly made, but was initially
intended as only a temporary solution. The plan was to use
Allegro-C only until dedicated ILS software (like VUBIS) was
configurable enough to easily accomodate the needs of a music
library. By 2003, most other users of Allegro-C (the Lemmens
Institute of Leuven and Conservatories of Antwerp and Ghent)
had integrated their catalogs with the library systems of their
associated university colleges or universities. In Brussels, this
step was never set [10].

The Allegro-C database, version 14, is a set of 16-bit
programs written for MS-DOS. As Microsoft’s Windows XP is
the last OS to natively support 16-bit MS-DOS programs, and
official support for Windows XP was ended on April 8, 2014,
a migration to a more recent system could not be postponed
any longer. First of all, we needed urgent solutions to enable
us to continue working on the old database with newer OSes,
while a new database was being researched.

The NTVDM (an MS-DOS Virtual Machine) in Microsoft
Windows 7 can run Allegro-C v14, but unfortunately does not
have full support for all keys on the AZERTY keyboards used

(a) Opening screen (b) Record display (c) Record editor

Fig. 1: A few screenshots of the Allegro-C v14 database system

in Belgium. To remedy this, an AZERTY keyboard driver
for the Windows 7 NTVDM MS-DOS was written [5], by
adapting a driver for a German QWERTZ keyboards. This
temporary solution enabled the library staff to safely use the
old database on currently supported OSes. Still, the NTVDM
is not without problems - e.g. the software does not run in full
screen anymore.

For even more recent computers (Microsoft Windows 8)
and other OSes (Linux, Mac OS X), using DOSBox [6] was at-
tempted. DOSBox’ preferences file was extended with a small
script to mount the database’s program and data directories, to
run at maximum speed, and to start Allegro-C automatically
at the start of DOSBox. However, we encountered difficulties
in writing to the data files on the local network drive. Some of
the characters with diacritical marks were also not displayed
correctly. We suspect this has to do with erroneous handling
of the encoding somewhere. To avoid corruption of the data
files, we only use this setup at workstations where read-only
access to the database is sufficient.

Our old version of Allegro-C (v.14) is not used as OPAC,
has no enforced input validation, does not use any author-
ity records or authorized lists, and does not have Z39.50
or similar functionalities to link to outside library catalogs.
Recent versions of Allegro-C have all these functionalities [7]
However, mostly since its documentation is only available in
German and it was unclear how easy it would be to translate
the interfaces to Dutch and French (for use in Belgium), we
decided to explore the migration to a web-based alternative
first, and picked the open source Koha project [3] as initial
migration target, mostly because of its very complete suite of
functionality.

III. ACCESSING AND EXPORTING DATA

Data can be extracted by from Allegro-C by writing an
export parameter file which lists the fields that need to be
exported and defines the formatting details of the output (tabs,
line delimiters, etc). This allows us to extract all data in
a CSV (comma-separated values) format. The text encoding
used in the database (and the resulting file) is Code Page
850 (in some editors known as IBM850 or MS-DOS Latin-1).
Awareness of this encoding is important in order to preserve
diacritical marks. If a new database system uses ANSI or UTF-
8 encoding, at some point a conversion needs to be made.
Advanced plaintext editors (jEdit, Notepad++, ...) have the
ability to do this.

The export file prints out all relevant fields, separated by a
tab, effectively creating a CSV file. The fields used in the
database are defined in a configuration file (*.cfg). The
export file (*.apr) looks like this (it was adapted from a
similar one with comments in German), with #t2 indicating
a tab:

[...]
-------- Konstanten

zl=0 Zeilenlnge unbegrenzt
ks=4 Beginn beim ersten Zeichen hinter #
ke="" Kategorie-Ende = Code 0
as=h0 Aufnahme-Start: Hierarchiekennung + 0
ae=13 10 Aufnahme-Ende: CR / LF
dx=1 beim Testen Steuerzeichen auf Bild
1=13 10
2=" "
3=": "
4="; "
5=""

-------- Anweisungsteil
#99n
#t2
#99t
#t2
#00
#t2
#90
#t2
#21
#t2
#41
[...]

Here we experience a first, unfortunately unpreventable, loss of
data. During manual input or later corrections, the field number
sometimes needed to be typed explicitly. Typing errors at that point
then lead to data entered in a field that is not part of the agreed
configuration (e.g., data in an non-existing field #211 instead of the
correct #21). These ’ghost’ fields (we cannot see their existence in
the database client) cannot be exported. Also, if any field contained
a tab character, its exported record did not line up correctly with the
columns. Approximately 10 such records were detected that needed
manual correction first.

A. Common errors in the database

The resulting CSV file is, after conversion of the character set to
UTF-8, easily imported into a spreadsheet program. Through sorting
and filtering we can get a first rough idea of common errors in the
database, especially in those fields that were supposed to only have a

limited number of possibilities (like, a checkmark to indicate whether
an item can be borrowed or not).

After running a database for 20 years without enforced input
validation, the list of potential errors is extensive. In September 2014,
with the database containing approximately 58000 valid records, we
found the following errors during a first pass-through (excluding any
errors in capitalization, titles or names):

• 12 records contained an invalid (non-numeric) character in
the creation date or correction date fields. 1

• 394 records had a missing creation date. 2

• 212 records contained no record creator code. 3

• At least 60 records contained visibly missing or erroneous
data on instrumentation. 4

• 95 records contained language codes in the instrumentation
field. 5

• 182 records contained tonality info in the instrumentation
field. 6

• 68 records contained language data in the tonality field. 7

• 4 records contained tonality data in the language field. 8

• 4 records contained an opus number in the tonality field.
• 39 records contained tonality errors, ranging from not adher-

ing to conventions (e.g. writing h-moll instead of b-minor)
to typos (e.g. a sonata in p-major).

• 28 records contained errors in the language field, mostly
misspellings.

• 85 records contained errors in the ISBN field. 45 of those
were superfluous mentions of ISBN-10 or ISBN-13. 21
books turned out to have an invalid ISBN-number printed
inside.

• 165 records contained an ISSN number in the ISBN field. 9

• 79 records had comment data in the medium field.
• 59 records had general typing errors in the medium field
• 150 records contained only a number in the material speci-

fication field without further specification (this field encodes
the extent of the item: nr of pages, dimensions etc).

• Approximately 450 records contained no status code (used
to indicate the type of a record).

• At least 16 records contained a shortcut command to edit or
delete a field, as textual data in a field instead. 10

• ...

Finally, it is internal convention to use ISBD rules to encode lists

1Since these numbers are automatically generated, these errors must have
been introduced during a manual correction of the record.

2Idem. Also, the amount of missing data may indicate this was the result
of a faulty macro applied to a batch of records once, or a maybe a software
bug in the save routine.

3Each contributor to the database is supposed to enter their personal code
in each record they add.

4The encoding system for instrumentation being very complex, this field
was later found to contain hundreds of more erroneous entries.

5This is a legacy from the earliest database configuration, when language,
tonality and instrumentation were still recorded in the same field. This was
later split up in separate fields, but the records encoded in the old configuration
were only partially, and sometimes erroneously, updated.

6idem
7idem
8idem
9This too is a legacy from the first configuration, when ISBN, ISSN and

other standard numbers were encoded in the same field.
10Result of not having pressed enter after the previous edit command,

combined with not checking the final result.

of items (separating them with semicolons etc.). Quite a few records
had errors in ISBD interpunction: we found 84 erroneous tonality
fields, 264 erroneous language fields, 86 erroneous ISBN fields, 81
erroneous medium fields, 380 erroneous material specification fields
etc.

Note that these were just errors that were in plain sight at the
very beginning of the project. Most of these were manually fixed by
library staff. More rigourous record validation and correction, based
on a more detailed parsing of contents, was developed in the software
created to convert the exported CSV file MARC21 [2].

IV. CONVERSION TO MARC21

The data structure of the old Allegro-C database is MARC-
like, but it’s not MARC21 - since MARC21 was only published in
1999 as a unified standard derived from its predecessors USMARC
and CAN/MARC, we call Allegro-C pre-MARC here. Allegro-C
encodes any kind of data as plain text in a field with a 3-character
code of choice. To convert the data to MARC21 (or Unimarc), a
mapping needs to be made from the current Allegro-C configuration
to MARC21 fields and subfields. Sometimes several fields in Allegro-
C contain information that needs to be aggregated into a single
MARC21 field. But more often, MARC21 is more detailed, and the
info currently in one Allegro-C field needs to be parsed and divided
among many MARC21 subfields.

We chose to write some dedicated software to assist in this
conversion [2], enabling us to apply different validation and correction
rules to each field. The software accepts a CSV file with the current
records as input - making it also useful to integrate some separate
catalogs for library subcollections that had been created by a few
researchers in Microsoft Excel. It also requires a small configuration
file that defines the mapping from columns in that CSV file to
MARC21 fields and subfields. Internally, each field is a proper
class with its own validation methods (to check for errors) and
print methods (to output). The entire routine prints to a mnemonic
MARC21 representation, which in turn can be compiled into machine-
readable MARC21 with tools such as MarcEdit [8].

Whenever a new field of the old data is processed, its information
is passed to the update() function of possibly several MARC21 Field
objects in the corresponding MARC21 Record being built up. These
update() functions contain the detailed parsing and storage routines,
and also need to take into account potentially previously entered
information which might be overwritten. Especially when information
from several CSV columns is merged into one MARC21 field, the
order in which the fields are processed may be important. In our
local mapping file, we usually load the column containing the most
complete information first as ”default data”, only to be later appended,
or possibly overwritten, with additional info from other columns as
necessary. The Field classes can be subclassed and its methods can
be overridden to define different validation and correction procedures,
should the software ever needed to be adapted for another project.

In what follows, we give a short overview of important fields
in our catalog, the errors we encountered in them and how they
were processed. We concentrate on bibliographic MARC records,
augmented with a bit of holdings data.

A. Header information

The MARC21 leader field that we create for every record is
mostly filled with default values - we assume that all records are
complete (full level) and new. The bibiographic level defaults to
monographs/items. If an ISSN is present somewhere, this is later
overwritten to be a serial.

More difficult is the processing of the item type, since it was
stored in more detail in Allegro-C’s material field than the MARC21

header allows for. As a general rule, we detect whether the material
field contains text, cd, dvd, vinyl, score... to define
whether this record should receive the code for a textbook, a score,
or a recording. If additionally it contains the term manus* (in any
language), it is updated to be a manuscript.

Problems arise with records that describe an item containing
different types, like a textbook with a CD or DVD attached, or a
vinyl record with a booklet. As we can only give one high-level code
here, an order of precedence was defined as follows, from most to
least important (MARC21 header code in []):

• Music: [c] (if manuscript: [d])
• Text: [a] (if manuscript: [t])
• Recording (CD, LP, cassette, tape, vinyl): [j]
• Film (VHS, DVD, photographic slides): [g]
• Pictures (photos, drawings, paintings): [k]
• Machine-readable items (computer files, microfilm): [m] 11

• 3D Items (kits, statues, realia): [r]

Some MARC21 types remain unused. They are:

• [e] and [f] for cartographic material, as we do not have any.
• [i] for non-music recordings. As it would be too complicated

to automatically decide from its description whether a CD
contains speech or music, and since we convert a music
catalog, we default to musical audio ([j]) for all recordings.

• [o] and [p] for kits and sets of mixed materials: these are rare
in the collection. We default to 3D artefacts [r] since that
can just as well describe kits and boxes of mixed materials.

A record encompassing items of several types will receive the
code for the most important item according to this prioritization. This
results in textbooks with accompanying CDs to be classified as books,
but also that CDs with described booklets risk to be classified as
books. The latter is however less common in the library collection,
and also easier to detect as erroneous afterwards.

A distinction between CD, LP (vinyl) and tape is made on the
level of item type definitions in the Koha catalog. Based on the
callnumber which is formatted in a particular way, these items with
the same header code receive an internal Koha Item Type code to
distinguish them in the OPAC. Similarly, archival material is split
off from regular textual materials and marked as archive. This is a
feature of the migration target, makin that search can be refined based
on more item types than recorded in the header.

B. Callnumbers and inventory numbers

Items have both a location number (callnumber) and an inventory
number. Usually, these are equal and unique, yet 620 callnumbers
in the database occurred multiple times. Often this were items of
which digital scans had been made, which then had been entered in
a separate record bearing the same callnumber. Others were series
of books, in which the separate volumes had not received individual
callnumbers. In about 50 items the inventory number or callnumber
needed to be updated since it had been either entered erroneously or
copied from a previously entered record without being updated.

We envision a new Integrated Library System to rely on unique
callnumbers to properly organize automated borrowing and return
of items, effectively equating the callnumber to the barcode. As a
result, all callnumbers needed to be made unique. Many were fixed

11Although the MARC21 specification says microfilms should get the same
code as the reproduced item, regarding it as machine-readable corresponds
better with current library policy, as this would group all scanned items
together.

manually. Those that remain, will automatically get an additional
number appended to the callnumber in order to make them unique.

C. Authors

Authors had been encoded as one semicolon-separated list of
names in standard form, with eventually a function and one or more
dates appended. These were split up between MARC21 fields 100
and 700, with subfield $a used to store the names, $d for the dates
and $e for the functions. These last relator terms has always been
limited to 33 valid functions (composer, author, editor, ...), abbreviated
in Dutch.

The old database did not enforce authority control. There was a
system to copy data from existing records, but few catalographers ever
used it, since it involved typing a long list of keyboard shortcuts. As
a result, many names exist in different spellings. About 10 different
renderings of C.P.E. Bach could be found, depending on whether the
initials had dots between them or not, or whether the first names were
fully written out or not (and correctly spelled or not). The resulting
messy author index caused major problems in search and retrieval.

To normalize this data, a system of authority control needs to
be enforced in the new database, yet since there is a lot of cleaning
up to do, this is a longer term endeavour. In the meantime, we have
extracted a list of over 15000 unique names in the old database, to be
checked against correctness - unfortunately a mostly manual work.
In the final conversion, this should allow us to replace erroneously
spelled names by the correct version.

Most of the other errors encountered here were typing mistakes:
no closing brackets, the wrong kind of brackets (mixing up (), [],
<>), etc. Several hundred records contained incorrect relator terms.
Most of these were spelling mistakes, sometimes the French version
of a term was used instead of the Dutch terminology in this field.
Many of these could be corrected by simple detection and replacement
in the conversion software.

Whether we will convert from the old list of relator codes to the
more extensive MARC Code List for Relators is still to be decided. We
also hope at some point to link our list of names semi-automatically
to an external Authority File like VIAF.

D. Music-specific data

For a music library, being able to search based on musical
attributes is of major importance. One of the major strengths of the
old Allegro-C database was that it had been configured to record
musically meaningful information in great detail. One could say that
at the time this was pioneering. Consequently, we wish to preserve
as much as possible of this information as we can.

1) Instrumentation: The encoding system for instrumentation
in the old database was pretty complicated, with many rules and
exceptions. We discover errors in almost half of all records containing
instrumentation info, if we parse the contents of the instrumentation
field strictly. Roughly speaking, the system is as follows:

• First describe the total number of performers, N if unknown.
• After a colon: one or more of 13 possible sections (voices,

strings, woodwinds, orchestra, ...), in a fixed order, with the
number of performers in each section attached to it.

• In between <> brackets: for each previously mentioned
section a subdivision per instrument, in the same order.

A string quartet is thus encoded as 4: str4 〈vi2 av1 vc1〉. For a
chamber orchestra, this becomes quickly more complicated. As an
exception, soloists are mentioned separately. Initially, we’ve decided
to detect the following errors:

• erroneous or not mentioned number of performers
• incorrect section abbreviations or section ordering
• incorrect interpunction

and we postponed checking for instrument abbreviations, ordering,
and whether all the numbers actually add up. 12

In MARC21, the (RDA-inpired [13]) instrumentation field 382
has several subfields that allow to split up the information that was
encoded as one text string the old database: $s for the total number
of performers, $b for soloists, $a for other instruments, $n for the
numbers of these instruments. 13

The main question remaining is what vocabulary to use. There
exists a vocabulary in MARC21 containing 99 2-letter items, the
MARC Instruments and Voices code list. However, it lacks sufficient
granularity (e.g. distinguishing cantus firmus, viola di bordone, SATB
saxophone types) for use in a specialized music library. Alternatively,
the current specification of UNIMARC field 146, managed by IAML,
contains a list of 281 unique 3-letter codes for 655 instruments [12].
However, UNIMARC’s use of several possible suffixes to these codes
does not contribute to readability. Finally, in 2014 the US Library of
Congress launched its own list with over 800 instrument names, the
LC Medium of Performance Thesaurus (LCMPT).

Whatever standard is adopted, this would require a translation
of all old self-defined instrument codes to their more standardized
counterparts. A final decision on this matter is still to be taken, as
first getting the errors out of the existing data is a priority. In the
meantime, the old database vocabulary is still in use, and just copied
without change into the $a subfield.

2) Tonality: Regarding tonality (MARC21 field 384), there are
also several encoding options: one could adopt the Plaine-and-Easie
code as used in MARC21 field 031 for musical incipits, write it
out fully as it appears on the item, or adopt the list of codes from
UNIMARC field 128. The system from the old database corresponds
closely to UNIMARC. Just like with instrumentation, the readability
can be a consideration: providing a controlled list of tonalities fully
written out is certainly an option.

As for errors in the existing data, simple typos were most
commonly encountered. Some encoders had recorded ”H” as tonality
if that appeared in German-language editions, even though it is policy
to transcribe this to the equivalent ”B”. Typos in the names of modes
also occurred a few times. Sometimes this field had a number in it,
e.g. when the encoder mixed it up with the field code for opus number.
Since the possible values in this field are limited, all of these errors
were easily fixed. Also, only 608 records had tonality information
actually encoded separately.

3) Opus: Converting the opus numbers (MARC21 field 383)
posed some specific challenges. Subfield $a encodes a general
numeric designation; in the old database this was meant to be encoded
as part of the title. This policy had however not always been adhered
to, especially by encoders that were initially unfamiliar with music.
Therefore, in the new database field 383$a remains unused, and
whenever the string ”nr” was encountered in the old data, the
conversion routine would spit out a warning. At the same time, the old
database’s field for opus numbers contained just a text string, while in
the new database we want to split it up into 3 useful subfields: $b for
opus numbers, $d for thematic catalog names and $c for thematic
catalog numbers.

12Checking whether numbers add up is a useful validation tool, but should
be able to handle some exceptions in this particular case. When multiple
performers play four-handed piano, it is encoded in the old database as 2:
toets1 〈pf1〉 (toets being the category for keyboard instruments, pf meaning
pianoforte).

13The choice for field 382 over field 048 is inspired by the recommenda-
tions that can be found in [13].

Opus numbers itself could also be encoded in a variety of ways:
with prefixes ”op”, ”opus”, ”op.”, ”op-” and variations thereof.
Some encoders insisted on writing ”oeuvre”, or ”opera” in the plural
case. With the necessary find-and-replace operations, this was a much
as possible normalized such that only one prefix (”op.” followed by a
space) remained. Everything that followed and started with a number
or with ”anh.” (for Anhang), was taken to be the actual opus number.

Since the same text string could also contain thematic catalog
numbers, an order of processing was defined: first lifting out anything
that looked like an opus number as described above, then treat
whatever is remaining as a thematic catalogue. The names of the the-
matic catalog were not always consistently capitalized, and sometimes
incorrectly spelled. It would take quite some time to hardcode checks
on catalog names in the conversion routine, while only about 920
records had opus information encoded in them. Manually browsing
all catalog abbreviations and correcting any errors encountered was
the quickest approach to correct the data here. There might be time to
implement more intricate checks (like checking that no Mozart item
has a BWV number encoded with it) in the future.

E. Publisher information

The old database had publisher information stored in 2 different
ways: either the publisher’s name, location, year were encoded into
1 field, or otherwise into several other fields (the addition of separate
fields for this information had only been done in 1998, after the
database had been in use for 4 years). Whenever this info was encoded
in several fields, it gets copied to the relevant MARC21 field 260
subfields: $a, $b, $c for the publisher and $e, $f, $g for the
printer.

To accomodate for the legacy way of encoding, where all this info
was contained in just one field, we needed to provide a workaround
in the update() function of the appropriate class in the conversion
software. Only when the data fed to the object came from that legacy
field, it should be parsed in more detail to be distributed among the
subfields. At the start of software development it was thought that
all data going into one MARC21 subfield was going to be formatted
reasonably similarly such that only one update() function was
necessary. Hence, we actually ended up with a problem on the level
of the software engineering the initial design of the software wasn’t
foreseen to facilitate this scenario.

As we needed a solution fast, for these cases a quick workaround
was coded instead of e.g. an additional layer of abstraction. We
ended up defining a mock subfield ”L” to which this legacy
field was mapped. In the code, this passes the parsing to an
updateLegacy() function that handles these older types of
records properly. Note that from a software engineering perspec-
tive, cleaner, more generic and more scalable solutions than this
workaround can certainly be devised. This will however need to wait
until a next refactoring iteration.

The legacy way of encoding had been often used, even af-
ter encoding in separate fields became an option. In total, at
least 6113 records contained all the publisher’s information as
one string in one field. This field was ISBD-encoded in the for-
mat place:publisher,year(printerplace:printername,printeryear), with
multiple items separated by semicolons. Unfortunately, some catalo-
graphers would interpret this by, in the case of multiple publishers,
writing place;place:publisher;publisher, while others would write
place:publisher;place:publisher. Hunderds of records used either
system, but most of them the former. Hence, all records using the
latter system were detected and manually fixed by re-encoding the
data it contained in the separate fields instead.

In the end, the following order was defined to parse this data:

• Everything up to the first colon is a place name

• Everything else up to the first comma is the publisher’s name
• Everything else up to the first open bracket is a year
• Everything else up to the next colon is the printer’s place,

etc.

This also allows for publisher’s names to contain colons (which
often occurs). As an additional sanity check for potential errors, a
warning was generated whenever an extracted year of publication
would contain more than just numbers, the letter ’x’, or phrases like
’s.a.’, ’cop.’, ’dep.’.

One of the main things still lacking is a system to deal with
translations of placenames. Often, old or Latin versions of placenames
are translated by the catalographer (e.g. ”Anvers [=Antwerpen]”).
Currently the entire string, including possible translations appended
to it, is copied into the corresponding MARC21 field. As a result,
this string as a whole is regarded as a placename and indexed as
such in the new database as well. Other library software than Koha,
our current migration target, may have ways to resolve this. For the
time being, dealing with translations (not only in this field but also
in titles, keywords, etc) is probably the single most important issue
left hanging in the air in this entire conversion operation.

F. Series information

It should be one of the more straightforward fields to process,
yet it wasn’t all rosy. Convention was that, in one field, a series title
and the volume number would be separated by semicolon. The most
occurring errors were in interpunction, like using colons instead of
semicolons. Close second were errors in spelling the series name
properly (result of the lack of validation), leading to one series
appearing as several groups of distinct series with only 1 letter
difference in the name. Whenever the series title had colons or
semicolons in them, the issue was further complicated as this clashed
with ISBD interpunction.

As a general rule, everything after the last occurring semicolon
was regarded as the volume and number information, to be encoded in
MARC21 field 490$v. Everything before was regarded as the series
statement (490$a). In general, this lead to satisfactory results, though
ideally an additional verification of correctness would be welcome.
To avoid too much manual work, we may look into trying to semi-
automatically link the titles to an external list that is under authority
control, as with authors.

G. Comments and notes

Most of the fields that contain remarks and comments can be
immediately ported to a suitable 5xx MARC21 field. Some of the
fields in the old database that do not have an immediate counterpart
in MARC21 are assigned to comment fields of which the definition
comes reasonably close.

There are a few fields in the old database that contain information
for which there is not immediately a MARC21 counterpart with a
closely corresponding definition available. Most notably, this was the
case for the name of the catalographer, which we store within each
record - as far as we could see, MARC21 only stores the name of
the institution. For these purposes fields 59x were used.

One so far unresolved issue is the treatment of lists of movements
or chapters. Many records contain such a list in one of the comment
fields, presenting a first problem: there was no specific field dedicated
for this info. The comment fields also may contain information on
the time signature, tempo markings or generic comments. Also, there
was never a strict formal way defined to encode lists of movements,
therefore every catalographer did it their own way, leading to a
plethora of numbering and interpunctions systems being found. Ide-
ally, this information is reformatted and put in MARC field 505. As

with the instrumentation, at the moment we found it easier to copy
everything as a general comment in field 500, and leave extraction
and reformatting of this data according to the MARC21 definition for
a later stage.

H. Links between records

Since a music library contains many compilation albums contain-
ing various works, quite a few records describe monograph parts or
book chapters. These are recognizable by the word ”onderdeel” (i.e.
”part” in Dutch) in their callnumber. As the very last step in the
entire conversion routine, when all records have been made and the
list of callnumbers is complete, these records are processed and have
their bibliographic level changed in the MARC21 header accordingly,
while also adding MARC fields 773$w and 774$w to establish
parent-child relationships.

Since Allegro-C did not require a parent record to be present
in case a part of a work was being described, we initially found
3207 descriptions of parts, for which a host item was not found
automatically in the other records. For the largest collections, some
parent records were manually created. For anything still left to
process, a 773$w empty parent record is created automatically, to
be filled in later.

V. CONFIGURATION OF THE MIGRATION TARGET

Koha [3] accepts MARC records for import, but internally uses
MySQL as storage system. While the raw MARC data is preserved,
most of the data gets copied into MySQL tables. Notably, core
bibliographic data, edition data, and holdings data are stored in
different tables (biblio, biblioitems and items respectively), hence
there is a FRBR-like concept in place in the backend.

We generally assume that every bibliographic record in the old
database also equates one item, whether lendable or not. Combined
with the assumption that all callnumbers are unique and can be
made into a barcode or identifier, this facilitates our conversion task
significantly, as we can purely focus on the MARC format and do
not need to do any special processing for multiple items of the
same record anymore. This did require that before the conversion,
the callnumbers were made unique.

Holdings data for use within Koha can be imported by adding a
field 952 (equivalent to field 852 of the MARC21 standard) to the
MARC record for every item, and populating it with the necessary
information. At least the holding library and the item type (codes as
defined in the local Koha installation, not the MARC institutional
codes or header type codes) need to be provided for the built-in
circulation system to function.

VI. CONCLUSION

With this entire conversion process from CSV files to MARC21,
we’ve been able to make a transition from an old MS-DOS based
stand-alone catalog to a modern web-accessible OPAC. In the process,
several clean-up efforts have weeded out a large number of errors that
existed in the database. In fact, if we retroactively apply the current
conversion routine to the database as it existed in September 2014
(with approximately 58000 valid records), we obtain a total of 1734
errors that could not be automatically fixed. Another 1447 items had
double callnumbers and 669 part descriptions had no parent record,
for a total of 3850 errors.

Throughout the process of manually correcting these, often ad-
jacent records were also updated whenever an error was noticed in
them that had slipped through the detection rules, e.g. for spelling or
interpunction errors. Between September 2014 and May 2015, a total
of 14493 records was updated manually, while 5637 had been added
in the same period.

Most interpunction and capitalization errors, as well as often
repeated errors against supposedly controlled lists, are remedied by
pretty trivial search-and-replace operations in the conversion routine,
leaving only the less trivial errors to be corrected manually. Errors
in semantics are much harder to find automatically and thus remain
mostly undetected for now. Our lowest estimate is that at least 15%
of the records in the old database contained such nontrivial errors,
of which quite a few will now have been corrected. We can however
not guarantee that the records in the new catalog are error-free.

The entire conversion process was implemented in C++ [2], as a
command line program that accepts a CSV file as input and generates
a MARC21 mnemonic file as output. This makes it suitable to convert
any catalog in Excel to MARC21. At this point however, conversion
rules are mostly hardwired into the code, and adapting it for use
elsewhere would first require some significant refactoring: adding a
layer of abstraction will be necessary to facilitate extension. Which
seamlessly brings us to:

VII. FUTURE WORK

Several major decisions still need to be taken regarding some of
the vocabularies that will be used, e.g for tonality, instrumentation,
etc. Additionally, the complete configuration and list of fields in the
new Integrated Library System remains under review. Since newer
ILS software also offers more possibilities, and MARC21 is a vastly
more extensive format than the previous customly configured one,
there are options to introduce new fields (e.g. to store URLs), or to
delete certain fields if they have grown out of use.

Most of the numeric data (opus numbers, dates of birth, dates
of composition etc.) have been exported as text strings and imported
into the new catalog as they were. This makes that at the moment
of writing, search based on numeric ordering is not yet possible. In
fact, so many of the numeric fields happened to contain non-numeric
characters (question marks, different ways of formatting dates, even
plain comments added by the catalographer) that this will still require
a major cleanup effort.

The Brussels Conservatories Library also digitizes materials on
request. These may in the nearby future be linked to the records by
recording an URI in the MARC21 852$u field. The adoption of
Linked Open Data would be a next step to work on, yet more time to
investigate the how is needed. This might need custom development,
at least when Koha remains the migration target, for which there are
currently no resources available.

A. On Language

The ultimate goal of a library catalog should be that for every
query asked, the set of returned results should be the same, regardless
of the language. Since a lot of the data is however significantly
language-dependent, this can only be accomplished through structured
translation efforts. In the particular case of the Brussels Conservato-
ries Library, the database contains roughly as many predominantly
French as predominantly Dutch records, while the structured vocab-
ularies in use having been Dutch-based.

Multilingual support is one of the main issues still remaining.
Keywords, titles, placenames, ... are sometimes accompanied by a
catalographer-added translation, but more often not. MARC21 is
rather lacking in support for multilingual records, e.g. the keyword
field 650 has no subfield that indicates what language the keyword
is in. As a result, when searching for a string quartet, one is likely to
miss the dozens of records that have quatuor á cordes as keyword.

Expanding the use of controlled vocabularies could remedy this
to some extent. However, maintaining several sets of vocabularies for
each language would be daunting to keep synchronized. Adding the
same term several times, once in each language, would also multiply

the time needed to create the record. A more streamlined workflow
would be to decide on one common language to be used throughout
the catalog, and have any necessary translations only done in the user
interface when necessary - however, such decision would also need
internal (political) support.

B. On the Software

Finally, let us note that the dedicated software that was written
for this project [2], definitely has future work cut out for it already.
Better generics, facilitating extendability, more documentation etc. are
a must before it is ready to be used by other parties. It was written in
C++ because of the author’s familiarity with that language, but Python
is at least as suitable for a text-processing intensive project like this
one: a port to another programming language would be worthwhile
to consider.

We are happy to report that the conversion software does suc-
cessfully creates correct MARC21 mnemonic files from the data
extracted in CSV-format from the old catalog. These were compiled
into MARC21 proper and bulk-imported into a Koha installation,
configured for use at the Brussels Conservatories Library. At the
moment of writing, the beta-version of the new catalog is available
online for testing by the general public 14.

This represents a significant upgrade from the old MS-DOS based
catalog, sporting a multilingual interface, full record search with fuzzy
matching and highlighting of results, advanced search on item type,
editor, ISBN, ... , filtering, etc. Functionality for circulation, adding
records, validation and authority control etc will first need to be
thoroughly tested before those will be activated on this new public
OPAC.

REFERENCES

[1] B. Eversberg, Allegro-C 14 Systemhandbuch. Braunschweig, Germany:
Universittsbibliothek der TU Braunschweig, 1995. ISBN 3-927115-25-8.

[2] J. Ganseman, csv2marc. Available online: https://github.com/
jganseman/csv2marc

[3] Koha Community, Koha Library Software. Available online: http://
koha-community.org/

[4] Infor Library Systems, V-smart. Available online: http://go.infor.com/
libraries/solutions/infor-v-smart/

[5] J. Ganseman, Azerty driver for Windows 7 NTVDM. Available online:
https://github.com/jganseman/azerty

[6] P. Veenstra, S. van der Berg, T. Frssman and U. Wohlers, DOSBox,
Available online: http://www.dosbox.com/

[7] UB Braunschweig, allegro-C: Software fr Bibliotheken. Available
online: http://www.allegro-c.de

[8] T. Reese, MarcEdit Available online: http://marcedit.reeset.net
[9] Library of Congress, Network Development and MARC Standards office,

MARC Standards Available online: http://www.loc.gov/marc/
[10] Jan Dewilde, Conservatoriumbibliotheken: de Assepoesters van het

muziekerfgoedbeleid, In: Bibliotheek & Archiefgids, vol. 86, nr. 1,
pp. 9-14, jan. 2010.

[11] Federatie van Organisaties op het gebied van het Bibliotheek-
Informatie- en Dokumentatiewezen (FOBID), Regels voor catalogus-
bouw gedrukte muziek, Den Haag, The Netherlands: Nederlands
Bibliotheek en Lektuur Centrum, 1989. ISBN 90-6252-051-0

[12] International Association for Music Libraries, List of codes for
medium of performance, Available online: http://www.iaml.info/
sub-commission-unimarc

[13] C. Mullin, M. Huismann, D. Iseminger, N. Lorimer. D. Paradis,
R. Schmidt, H. Vermeij, Best Practices for Music Cataloging Using
RDA and MARC21, v1.1, RDA Music Implementation Task
Force, Music Library Association, feb. 2015. Available online: http:
//bcc.musiclibraryassoc.org/bcc.html

14Available at http://catalog.b-bc.org

